1,791 research outputs found

    A Reanalysis of Small Scale Velocity Dispersion in the CfA1 Survey

    Get PDF
    The velocity dispersion of galaxies on scales of r1h1r\sim1h^{-1} Mpc, σ12(r)\sigma_{12}(r), may be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We present a reanalysis of the CfA1 survey, correct an error in the original analysis of Davis and Peebles (1983), and find that σ12(r)\sigma_{12}(r) is extremely sensitive to the details of how corrections for infall into the Virgo cluster are applied. We conclude that a robust value of σ12\sigma_{12} cannot be obtained from this survey. We also discuss results from other redshift surveys, including the effect of removing clusters.Comment: 12 pages, uuencoded(latex file + 2 Postscript figures), uses aas macro

    Squelched Galaxies and Dark Halos

    Get PDF
    There is accumulating evidence that the faint end of the galaxy luminosity function might be very different in different locations. The luminosity function might be rising in rich clusters and flat or declining in regions of low density. If galaxies form according to the model of hierarchical clustering then there should be many small halos compared to the number of big halos. If this theory is valid then there must be a mechanism that eliminates at least the visible component of galaxies in low density regions. A plausible mechanism is photoionization of the intergalactic medium at a time before the epoch that most dwarf galaxies form in low density regions but after the epoch of formation for similar systems that ultimately end up in rich clusters. The dynamical timescales are found to accommodate this hypothesis in a flat universe with Omega_m < 0.4. If small halos exist but simply cannot be located because they have never become the sites of significant star formation, they still might have dynamical manifestations. These manifestations are hard to identify in normal groups of galaxies because small halos do not make a significant contribution to the global mass budget. However, it could be entertained that there are clusters of halos where there are only small systems, clusters that are at the low mass end of the hierarchical tree. There may be places where only a few small galaxies managed to form, enough for us to identify and use as test probes of the potential. It turns out that such environments might be common. Four probable groups of dwarfs are identified within 5 Mpc and the assumption they are gravitationally bound suggests M/L_B ~ 300 - 1200 M_sun/L_sun, 6 +/- factor 2 times higher than typical values for groups with luminous galaxies.Comment: Accepted ApJ 569, (April 20), 2002, 12 pages, 6 figures, 1 tabl

    The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    Full text link
    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z ~ 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H160_{AB} < 24.0. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z < 1. [abridged]Comment: Accepted for publication in the Astronomical Journal; 54 pages, 21 figures. Figures 10 and 11 are included separately in JPEG forma

    Space/Time Analysis of Fecal Pollution and Rainfall in an Eastern North Carolina Estuary

    Get PDF
    The Newport River Estuary (NPRE) is a high priority shellfish harvesting area in eastern North Carolina (NC) that is impaired due to fecal contamination, specifically exceeding recommended levels for fecal coliforms. A hydrologic-driven mean trend model was developed, as a function of antecedent rainfall, in the NPRE to predict levels of E. coli (EC, measured as a proxy for fecal coliforms). This mean trend model was integrated in a Bayesian Maximum Entropy (BME) framework to produce informative Space/Time (S/T) maps depicting fecal contamination across the NPRE during winter and summer months. These maps showed that during dry winter months, corresponding to the oyster harvesting season in NC (October 1st to March 30th), predicted EC concentrations were below the shellfish harvesting standard (14 MPN per 100 ml). However, after substantial rainfall 3.81 cm (1.5 inches), the NPRE did not appear to meet this requirement. Warmer months resulted in the predicted EC concentrations exceeding the threshold for the NPRE. Predicted ENT concentrations were generally below the recreational water quality threshold (104 MPN per 100 ml), except for warmer months after substantial rainfall. Once established, this combined approach produces near real-time visual information on which to base water quality management decisions

    E-cadherin can limit the transforming properties of activating β-catenin mutations

    Get PDF
    Wnt pathway deregulation is a common characteristic of many cancers. But only Colorectal Cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of pancreas) have activating mutations in β-catenin (CTNNB1). We have compared the dynamics and the potency of β-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β-catenin took much longer to achieve a Wnt deregulation and acquire a crypt-progenitor-cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β-catenin mutation to differentially transform the SI versus the colon correlated with significantly higher expression of the β-catenin binding partner E-cadherin. This increased expression is associated with a higher number of E-cadherin:β-catenin complexes at the membrane. Reduction of E-cadherin synergised with an activating mutation of β-catenin so there was now a rapid CPC phenotype within the colon and SI. Thus there is a threshold of β-catenin that is required to drive transformation and E-cadherin can act as a buffer to prevent β-catenin accumulation

    Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling

    Get PDF
    Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard
    corecore